High-order path-integral Monte Carlo methods for solving quantum dot problems.
نویسنده
چکیده
The conventional second-order path-integral Monte Carlo method is plagued with the sign problem in solving many-fermion systems. This is due to the large number of antisymmetric free-fermion propagators that are needed to extract the ground state wave function at large imaginary time. In this work we show that optimized fourth-order path-integral Monte Carlo methods, which use no more than five free-fermion propagators, can yield accurate quantum dot energies for up to 20 polarized electrons with the use of the Hamiltonian energy estimator.
منابع مشابه
Computational Methods for Correlated Quantum Systems
II. Classical and Path Integral Monte Carlo (Filinov, Bonitz; Nov. 10,12,14, 17) a) Introduction to classical Metropolis Monte Carlo b) Quantum Statistics, Density matrix c) Feynman’s path integral. Mapping onto an effective classical system d) Spin statistics, exchange, Fermion sign problem e) Generalized Metropolis algorithm for quantum systems, PIMC f) High-temperature N-particle density mat...
متن کاملEffective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods
We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples f...
متن کاملExtrapolated high-order propagators for path integral Monte Carlo simulations.
We present a new class of high-order imaginary time propagators for path integral Monte Carlo simulations that require no higher order derivatives of the potential nor explicit quadratures of Gaussian trajectories. Higher orders are achieved by an extrapolation of the primitive second-order propagator involving subtractions. By requiring all terms of the extrapolated propagator to have the same...
متن کاملImpurity effects in few-electron quantum dots: Incipient Wigner molecule regime
– Numerically exact path-integral Monte Carlo data are presented for N ≤ 10 strongly interacting electrons confined in a 2D parabolic quantum dot, including a defect to break rotational symmetry. Low densities are studied, where an incipient Wigner molecule forms. A single impurity is found to cause drastic effects: (1) The standard shell-filling sequence with magic numbers N = 4, 6, 9, corresp...
متن کاملSimulating Stochastic Diffusions by Quantum Walks
Stochastic differential equation (SDE) and Fokker-Planck equation (FPE) are two general approaches to describe the stochastic drift-diffusion processes. Solving SDEs relies on the Monte Carlo samplings of individual system trajectory, whereas FPEs describe the time evolution of overall distributions via path integral alike methods. The large state space and required small step size are the majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2015